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| Applications of GNN Al Zrive

Many real-world data are graphs.
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Social Network Knowledge Graph Drugs and New materials

« Graph Neural Network (GNN) has achieved great success in many graph-based
applications.

« Compared with CNN, GNN has the ability to enhance its feature (or representation in
each layer) with the adjacent nodes, and thus improve the model performance.



| Low Scalability of GNN Al Zrive
1. High Memory/Time Cost in Single Machine

« Hard to load the feature and adjacent matrix due to limited GPU memory.

« The matrix multiplication is time-consuming.
2. High Communication Cost in Distributed Setting

« k-layer GNNs have to pull and aggregate the graph embedding of the k-hop neighbors
of nodes in each batch training.

» The speedup is unsatisfactory due to the high communication cost.
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] Low Flexibility of GNN

1. Restricting D,, = D,

Feature Matrix X(©

AD

\ / Propagation

V(O) Ax(©

x@® = Ax@ /

f
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Fully connected layer

Normalized adjacent matrix

* GNN has two depth, the propagation depth D, and transformation depth D,

* We need large D, for sparse graph and large D, for large graph
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| Low Flexibility of GNN Al Zrive

2. Inconsistent smoothing speed
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(a) Two nodes with different local structures (b) The CDF of LSI in different graphs

Figure 1: (Left) The local graph structures for two nodes in different regions; the node in dense
region has larger smoothed area within two iterations of propagation. (Right) The CDF of LSI in
three citation networks.

« Smoothing speed in dense region is extremely faster than the sparse region and noise
IS introduced If we propagate so many times.

 Different nodes require different propagation steps.



| Over-Smoothing issue Al rive

» GNN smooths the representation of each node via aggregating its own representations
and the ones of its neighbors.

> Suppose D is the diagonal node degree matrix with self loops, and A = D"~1AD " is the
normalized adjacency matrix. By continually smoothing the node feature with infinite

number of propagation in SGC, the final smoothed feature is

X(®) = A°x

oo _ (d; + 1) (d; + 1)1_T
L 2m +n

The final feature is over-smoothed and unable to capture the full graph structure information

since It only relates with the node degrees of target nodes and source nodes.



] An example of over-smoothing Al Zrive
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J limitations Al Brive
1. Over-smoothing
« Deep GNN faces the over-smoothing problem that the node representation is less

discriminative.

2. Under-smoothing
« Each node in a k-layer GNN can only capture the node attribute and node dependency
Information in its k-hop neighbors. For sparse graphs, lots of valuable information in

unlabeled nodes is ignored when we use shallow architecture.
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| Scalable GNNs Al Zrive
1. Sampling

« Graph-wise sampling: Cluster-GCN, GraphSAINT

« Layer-wise sampling: Fast-GCN, AS-GCN

* Node-wise sampling: GraphSAGE, VR-GCN
2. Model decoupling

« SGC

 SIGN

« GBP

« S2GC

Our method focuses on the second type since it is more efficient and scalable.



] SGC(ICML 19)
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Figure 1. Schematic layout of a GCN v.s. a SGC. Top row: The GCN transforms the feature vectors repeatedly throughout K layers
and then applies a linear classifier on the final representation. Bottom row: the SGC reduces the entire procedure to a simple feature

propagation step followed by standard logistic regression.

« SGC firstly propagates the feature to high order and then keeping a small

number of transformation.

* [t faces over-smoothing issue when the propagation step is large.
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| SIGN Al Zrive
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Figure 1: The SIGN architecture for r generic graph filtering operators. @, represents the k-th dense
layer transforming node-wise features downstream the application of operator £, | is the concatenation
operation and €2 refers to the dense layer used to compute final predictions.

SIGN further improve SGC by adding more diffusion operators, such as PageRank-

based and triangle-based adjacency matrices.

« No flexibility: some node needs less receptive field while other nodes need more.
SIGN simply concatenate the global and local representation, ignoring the

personalization of each node.



] DAGNN(KDD 20)

Figure 5: An illustration of the proposed Deep Adaptive Graph Neural Network (DAGNN) . For clarity, we show the pipeline
to generate the prediction for one node. Notation letters are consistent with Eq.(8) but bold lowercase versions are applied to
denote representation vectors. s is the projection vector that computes retainment scores for representations generating from
various receptive fields. sy, 51, 52, and s;. represent the retainment scores of z, hy, hy, and hy, respectively.
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It can be seen as a type of label propagation since it just weighted ensemble the outputs of

each propagated MLP predictions.

The MLP prediction and the label propagation can not be decoupled and DAGNN is trained in

an end-to-end manner. Correspondingly, the scalability is limited.

One global vector is adopted to train the weight of different propagated label, such process may

be hard to train.
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| NDLS(NeurlPS 2021, Spotlight) Al Zrive

Problem: how to control the smoothness in a node dependent way ?

Definition Local-Smoothing Iteration(LSI, parameterized by €) is defined as
K(i,e) = min {k: ||fi — I(k)l-”2 < E},

Where € Is an arbitrary small constant with € > 0,
< (k)
X

0% i
1(k)i ;= ail{é) ,Vh e {1,2,-,f},and [ = I(e0).
jh




| Node Dependent Local Smoothing

Node Dependent

Propagation

Smooth Feature with NDLS-F (replaceable)

Feature X Adjacent Matrix A X Soft label ¥
Stage 1: prep sing Stage 2: training

Smooth Label with NDLS-L
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Figure 2: Overview of the proposed NDLS method containing 1) feature smoothmg with NDLS

(NDLS-F); 2) model training with smoothed features; 3) label smoothing with NDLS (NDLS-L).

NDLS-F and NDLS-L are pre-processing and post-processing steps, respectively.

— " P(NDLS-F)-T-P(NDLS-L) «—

All ML models (MLP, LR, XGB, ect.)
can be applied
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| Method Al >rive

Vector Form Matrix Form
~ 1 K (i) (k) ~ R e, i=j and k< K(ie)
Xz(ﬁ) = m kzzo X, N DLS'F X(e) = kZ=o M®X®), M(k)ij - {é(i’E)H’ otherwise B |

T

K (i,€) max K (i,€)
3 1 IRR S ’Z ;
(€) K(i,e) +1 & * NDLS-L Y(e) Pt MY

Table 1: Algorithm analysis for existing scalable GNNs. n, m, ¢, and f are the number of nodes,
edges, classes, and feature dimensions, respectively. b is the batch size, and & refers to the number of
sampled nodes. L corresponds to the number of times we aggregate features, K is the number of
layers in MLP classifiers. For the coupled GNNs, we always have K = L.

Type | Method | Preprocessing and postprocessing | Training | Inference \ Memory NDLS haS a Smallel’ or Competitive training
Node-wise sampling | GraphSAGE - O(ktnf?) O(ktnf?) O(bk: f + Lf?) R . . .
Layer-wise sampling | _FastGCN : O(kLnf?) O(kLnf?) | O(kKLf+LJ?) and inference complexity comparing with
Graph-wise sampling | Cluster-GCN O(m) O(Lmf + Lnf?) | O(Lmf + Lnf?) | O(bLf + Lf?)

SGC O(Lmf) O s?) o(nf?) OBf + f2) other scalable GNNs.
Linear model $*GC O(Lmf) O(nf?) O(nf?) O(bf + f?)

SIGN O(Lmf) O(Knf?) O(Knf?) O@BLf + K 2)

GBP O(Lnf + LYmlsn) O(Knf?) O(Knf?) Obf + Kf?)
Linear model NDLS O(Lmf + Lmc) O(Knf?) O(Knf?) O(bf + K f?)




| What influences LSIs? Al Zrive

Theorem 3.1. Given feature smoothing X (%) = A*X with A = DA, we have

where Ay is the second largest eigenvalue of A, d; denotes the degree of node v; plus 1 (i.e.,
d; = d; + 1), and m, n denote the number of edges and nodes respectively.

Positively related with
* The scale of graph(m, n)
* The sparsity of graph (A,)

Negatively related with

(b) The visualization of LSI

» The node degree (d;)

*  Adjacent nodes have similar LSIs

. Nodes with a super-node as neighbors (or neighbor’s neighbors)
Theorem 3.2. For any nodes i in a graph G, may have small LSIs
K(i,e) <max{K(j,¢),j € N(i)} +1,

where N (i) is the set of node v;’s neighbours.
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| Setups Al Zrive
» Datasets

Table 2: Overview of datasets and task types (T/I represents Transductive/Inductive).

Dataset #Nodes #Features #Edges #Classes #Train/Val/Test Type Description
Cora 2,708 1,433 5,429 7 140/500/1,000 T citation network
Citeseer 3,327 3,703 4,732 6 120/500/1,000 T citation network
Pubmed 19,717 500 44,338 3 60/500/1,000 T citation network
Industry 1,000,000 64 1,434,382 253 5K/10K/30K T short-form video network
ogbn-papers100M 111,059,956 128 1.615.685.872 172 1,207K/125K/214K T citation network
Flickr 89,250 500 899,756 7 44K/22K/22K I image network
Reddit 232,965 602 11,606,919 41 155K/23K/54K I social network

> Baselines

1. Decoupled GNNs: APPNP, AP-GCN, PPRGo, DAGNN
2. Coupled GNNs: GCN, GAT, JK-Net
3. Linear Models: MLP, SGC, SIGN, S2GC, GBP


https://github.com/zwt233/NDLS

] Accuracy and Efficiency Comparison Al Zrive

Table 3: Results of transductive settings. OOM means “out of memory”.

Type Models Cora Citeseer PubMed Industry ogbn-papers100M
GCN 81.8+05 70.8+0.5 79.3+0.7 45.9+0.4 0OM 48 NOLS
Coupled GAT 830407 725407 79.0403 46.8+0.7 00M - - i
JK-Net 81.8+0.5 70.7+0.7 78.8+0.7 47.2+0.3 OOM Models Flickr Reddit JlK-glgt
APPNP 833405 718405 80.1402 46.7-+0.6 00M GraphSAGE 501413 95.440.0 g, & AP-GON GAT
AP-GCN 834403 713405 797403 46.9+0.7 00M FastGCN 504201 93.740.0 z o >
Decoupled PPRGo 824402 71.3+0.5 80.0+£04 46.6+0.5 0OM TN i g e  SION ApPNP REESCN
DAGNN (Gate) 844405 733+0.6 80.5+0.5 47.140.6 0OM ClusterGCN 48.1£0.5  95.7+0.0 g &% Gon 78X
DAGNN (NDLS-L)* 844406 73.640.7 80.9+0.5 47.240.7 00M GraphSAINT 51.14+0.1 96.6+0.1 = 46 35x
pgers SI0E02 13103 159105 452:03  Gaza0 NDLSF+MLE* 519402 96.620.1 "
B . . . . . . . . . *
Linear SIGN 821403 724408 79.5+0.5 46.3+0.5 64.240.2 GraphSAGE”fDLS‘L 51.5+0.4  96.3+0.0 5
S2GC 827403 73.0402 79.9403 46.6+0.6 647403 NDLS 52.6+0.4 96.8+0.1 45
GBP 83.940.7 729405 80.6404 46.9-0.7 652403 ‘ . _ 100 10! 102
NDLS-F+MLP*  84.140.6 73.540.5 81.140.6 47.540.7 653105 Table 4: Results of inductive settings. Relative Training Time
Lincar MLP+NDLS-L*  83.940.6 73.140.8 81.140.6 46.9+0.7 64.6+0.4
SGC+NDLS-L* 842402 734405 81.140.4 47.140.6 64.940.3 . . . .
NDLS* 84.610.5 737+0.6 81.4+04 47.7+0.5 65.6+0.3 Figure 3: Performance along with training

time on the Industry dataset.

» MLP with FS or LS achieve competitive performance. > NDLS can get the best tradeoff

» LS can be cooperated and improve the current model, between training time and test
such as SGC and DAGNN. accuracy.

» Both FS and LS contributes to the performance.



| Other Experiments Al Zrive
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Figure 4: Test accuracy on PubMed dataset under different levels of feature, edge and label sparsity.

NDLS performs well and robustly on sparse graphs.

Table 1: Results of different base models on PubMed.

Base Models Models Accuracy Gain

Base 72.7+0.6 -
+ NDLS-F 81.1+0.6 +8.4

MLP + NDLS-L 81.1+0.6 + 8.4
+ NDLS (both) 81.4+04 + 8.7
Bas 74.4+0.2 - 1
cowe a0z - o NDLS works with tree based models.
. 3501 +5
+ NDLS-L 80.0+£0.2 +5.6
+ NDLS (both) 80.5+04 +6.1
Base 74.1+0.2 -
XGB + NDLS-F 81.0+0.3 +6.9

+ NDLS-L 798£0.2 +5.7
+ NDLS (both) 81.6+03 +7.5




| Interpretability
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(a) LSI along with the node degree (b) The visualization of LSI

Figure 5: (Left) LSI distribution along with the node degree in three citation networks. (Right) The
visualization of LSI in Zachary’s karate club network. Nodes with larger radius have larger LSIs.

Theorem 3.1. Given feature smoothing X¥) = AFX with A = DA, we have

i Theorem 3.2. For any nodes i in a graph G,

; &) : o\ :
K(iye) < max{K(j,e),j € N(i)} + 1,

where N (1) is the set of node v;’s neighbours.

&,

K(i,e) <1
(7’5 E) — OgAz (E 2m+n

where \; is the second largest eigenvalue of A, d; denotes the degree of node v; plus I (i.e.,
d; = d; + 1), and m, n denote the number of edges and nodes respectively.

. Nodes with a higher degree have a smaller LSI (Theorem 3.1)
«  Adjacent nodes have similar LSIs (Theorem 3.2)

. Nodes with a super-node as neighbors (or neighbor’s neighbors) may have small LSIs (Theorem 3.2)
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| Implementation

Table 6: URLs of baseline codes.

Type Baselines URLs
Coupled GCN https://github.com/rusty 1s/pytorch_geometric
P GAT https://github.com/rusty 1s/pytorch_geometric
APPNP https://github.com/rusty 1s/pytorch_geometric
Decounled PPRGo https://github.com/TUM-DAML/pprgo_pytorch
p AP-GCN https://github.com/spindro/AP-GCN
DAGNN https://github.com/divelab/DeeperGNN
GraphSAGE https://github.com/williamleif/GraphSAGE
Samplin GraphSAINT https://github.com/GraphSAINT/GraphSAINT
ping FastGCN https://github.com/matenure/FastGCN
Cluster-GCN  https://github.com/benedekrozemberczki/ClusterGCN
SGC https://github.com/Tiiiger/SGC
SIGN https://github.com/twitter-research/sign
Linear S2GC https://github.com/allenhaozhu/SSGC
GBP https://github.com/chennnM/GBP
NDLS https://github.com/zwt233/NDLS
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] Conclusion Al Zrive
Advantages

1. Deep

« NDLS is able to go very deep without the over-smoothing issue
2. Scalable

« MLP (or tree-based model) is easy for distributed learning (no feature pulling communication)
3. Efficient

* MLP (or tree-based model) is simple and acquires less computation cost compared with GNNs
4. Flexible

* NDLS can be applied to any ML models

Applications

1. Sparse Graph
« NDLS can help to propagate the graph information of sparse graph by increasing the
propagation steps.
2. Large Graph
« NDLS is scalable in distributed settings for extremely large graph in industrial production
environment.
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