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Motivation篇
GNN的应用和局限



Appl icat ions  of  GNN

Many real-world data are graphs.

Social Network Knowledge Graph Drugs and New materials

• Graph Neural Network (GNN) has achieved great success in many graph-based 

applications.

• Compared with CNN, GNN has the ability to enhance its feature (or representation in 

each layer) with the adjacent nodes, and thus improve the model performance.



Low Scalabi l i ty  of  GNN

2. High Communication Cost in Distributed Setting

• 𝑘-layer GNNs have to pull and aggregate the graph embedding of the 𝑘-hop neighbors 

of nodes in each batch training. 

• The speedup is unsatisfactory due to the high communication cost.

Speedup                  Bottleneck

1. High Memory/Time Cost in Single Machine

• Hard to load the feature and adjacent matrix due to limited GPU memory.

• The matrix multiplication is time-consuming. 



Low F lex ib i l i ty  of  GNN

1. Restricting 𝑫𝒑 = 𝑫𝒕

• GNN has two depth, the propagation depth 𝐷p and transformation depth 𝐷𝑡

• We need large 𝐷p for sparse graph and large 𝐷𝑡 for large graph 



Low F lex ib i l i ty  of  GNN
2. Inconsistent smoothing speed

• Smoothing speed in dense region is extremely faster than the sparse region and  noise 

is introduced if we propagate so many times.

• Different nodes require different propagation steps.



Over-Smoothing issue

➢GNN smooths the representation of each node via aggregating its own representations 

and the ones of its neighbors. 

➢Suppose ෩D is the diagonal node degree matrix with self loops, and ෡A = ෩D𝑟−1෩A෩D−𝑟 is the 

normalized adjacency matrix. By continually smoothing the node feature with infinite 

number of propagation in SGC, the final smoothed feature is

X ∞ = ෡A∞X, ෡A𝑖,𝑗
∞ =

𝑑𝑖 + 1 𝑟 𝑑𝑗 + 1
1−𝑟

2𝑚 + 𝑛

The final feature is over-smoothed and unable to capture the full graph structure information 

since it only relates with the node degrees of target nodes and source nodes.



An example of  over-smoothing
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l imitat ions

1. Over-smoothing

• Deep GNN faces the over-smoothing problem that the node representation is less 

discriminative.

2. Under-smoothing

• Each node in a 𝑘-layer GNN can only capture the node attribute and node dependency 

information in its 𝑘-hop neighbors. For sparse graphs, lots of valuable information in 

unlabeled nodes is ignored when we use shallow architecture.



Related Works篇



Scalable  GNNs 

1. Sampling 

• Graph-wise sampling: Cluster-GCN, GraphSAINT

• Layer-wise sampling: Fast-GCN, AS-GCN

• Node-wise sampling: GraphSAGE, VR-GCN

2. Model decoupling

• SGC

• SIGN

• GBP

• S2GC

Our method focuses on the second type since it is more efficient and scalable.



SGC(ICML 19)

• SGC firstly propagates the feature to high order and then keeping a small 

number of transformation. 

• It faces over-smoothing issue when the propagation step is large.



SIGN 

SIGN further improve SGC by adding more diffusion operators, such as PageRank-

based and triangle-based adjacency matrices. 

• No  flexibility: some node needs less receptive field while other nodes need more. 

SIGN simply concatenate the global and local representation, ignoring the 

personalization of each node.



DAGNN(KDD 20)

• The MLP prediction and the label propagation can not be decoupled and DAGNN is trained in 

an end-to-end manner. Correspondingly,  the scalability is limited.

• One global vector is adopted to train the weight of different propagated label, such process may 

be hard to train. 

It can be seen as a type of label propagation since it just weighted ensemble the outputs of 

each propagated MLP predictions.



Method篇



NDLS(NeurIPS 2021，Spot l ight)

Definition Local-Smoothing Iteration(LSI, parameterized by 𝜖) is defined as

𝐾 𝑖, 𝜖 = min 𝑘: ሚ𝐼𝑖 − 𝐼 𝑘 𝑖 2
< 𝜖 ,

Where 𝜖 is an arbitrary small constant with 𝜖 > 0,

𝐼 𝑘 𝑖,𝑗 =
𝜕෡X𝑖ℎ

𝑘

𝜕෡X𝑗ℎ
0
, ∀ℎ ∈ 1,2,⋯ , 𝑓 , and ሚ𝐼 = 𝐼 ∞ .

Problem: how to control the smoothness in a node dependent way ?



Node Dependent  Local  Smoothing

P(NDLS-F)-T-P(NDLS-L)
Node Dependent
Propagation

Node Dependent
Propagation

All ML models (MLP, LR, XGB, ect.)
can be applied



NDLS-F

T

NDLS-L

Vector Form Matrix Form

NDLS has a smaller or competitive training 

and inference complexity comparing with 

other scalable GNNs.  

Method



What inf luences  LSIs?

Positively related with

• The scale of graph(m, n)

• The sparsity of graph (λ2)

Negatively related with

• The node degree (𝑑𝑖)
• Adjacent nodes have similar LSIs

• Nodes with a super-node as neighbors (or neighbor’s neighbors) 

may have small LSIs



Experiment篇



Setups

➢ Datasets

➢ Baselines

1. Decoupled GNNs: APPNP,  AP-GCN,  PPRGo, DAGNN

2. Coupled GNNs: GCN, GAT, JK-Net

3. Linear Models: MLP, SGC, SIGN, S2GC, GBP

https://github.com/zwt233/NDLS

https://github.com/zwt233/NDLS


Accuracy and Eff ic iency Compar ison

➢ MLP with FS or LS achieve competitive performance.

➢ LS can be cooperated and improve the current model, 

such as SGC and DAGNN.

➢ Both FS and LS contributes to the performance.

➢ NDLS can get the best tradeoff 

between training time and test 

accuracy.



Other  Exper iments

NDLS performs well and robustly on sparse graphs.

NDLS works with tree based models.



Interpretabi l i ty

• Nodes with a higher degree have a smaller LSI (Theorem 3.1)

• Adjacent nodes have similar LSIs (Theorem 3.2)

• Nodes with a super-node as neighbors (or neighbor’s neighbors) may have small LSIs (Theorem 3.2)



Implementat ion



Conclusion篇



Conclus ion

Advantages

1. Deep

• NDLS is able to go very deep without the over-smoothing issue

2. Scalable

• MLP (or tree-based model) is easy for distributed learning (no feature pulling communication)

3. Efficient

• MLP (or tree-based model) is simple and acquires less computation cost compared with GNNs

4. Flexible

• NDLS can be applied to any ML models

Applications

1. Sparse Graph

• NDLS can help to propagate the graph information of sparse graph by increasing the 

propagation steps.

2. Large Graph

• NDLS is scalable in distributed settings for extremely large graph in industrial production 

environment.



PKU-DAIR实验室
北京大学数据与智能实验室(Data and Intelligence Research Lab at Peking University) :
实验室由北京大学计算机系长江学者特聘教授崔斌老师带领，多年来主要在人工智能、大数据等领域进行前沿研究，在理论和技术创新以及系统研发上取得多项成
果，已在国际顶级学术会议和期刊发表学术论文100余篇。

开源项目：实验室围绕机器学习系统已经展开了多方面的研究工作，包括机器学习/深度学习系统优化、 AutoML、图机器学习、AI4DB等，发布了多个开源项目：

黑盒优化系统OpenBox
https://github.com/PKU-DAIR/open-box

自动化机器学习系统MindWare
https://github.com/PKU-DAIR/mindware

分布式深度学习系统河图（Hetu）
https://github.com/PKU-DAIR/hetu

分布式机器学习平台Angel
https://github.com/Angel-ML

企业合作：
2017年，课题组与腾讯公司成立北京大学-腾讯协同创新实验室，深度合作并开源了分布式机器学习平台Angel。另外，实验室还与阿里巴巴、苹果、百度、快手、
中兴通讯等多家知名企业开展项目合作和前沿探索，解决实际问题，进行科研成果的转化落地。

欢迎感兴趣的同学联系实习或交流问题！

微信：z1299799152

邮箱：wentao.zhang@pku.edu.cn

https://github.com/PKU-DAIR/open-box
https://github.com/PKU-DAIR/mindware
https://github.com/PKU-DAIR/hetu
https://github.com/Angel-ML
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